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A B S T R A C T

This paper presents a fast blind image sharpness/blurriness assessment model (BISHARP) which operates in
spatial and transform domain. The proposed model generates local contrast image maps by computing the root-
mean-squared values for each image pixel within a defined size of local neighborhood. The resulting local
contrast maps are then transformed into the wavelet domain where the reduction of high frequency content is
evaluated in the presence of varying blur strengths. It was found that percentile values computed from sorted,
level-shifted, high-frequency wavelet coefficients can serve as reliable image sharpness/blurriness estimators.
Furthermore, it was found that higher dynamic range of contrast maps significantly improves model perfor-
mance. The results of validation performed on seven image databases showed a very high correlation with
perceptual scores. Due to low computational requirements the proposed model can be easily utilized in real-
world image processing applications.

1. Introduction

A modern information society is overwhelmed with huge amounts
of visual content being generated, stored and shared on a daily basis.
Each processing phase, from image recording to reproduction, in-
troduces various distortions which can lead to reduced visual experi-
ence. One of such distortions, closely related to the loss of visual acuity,
limited contrast sensitivity and perceived image sharpness is blur [1].
In certain cases, the blur distortion can question the performance of a
human or artificial visual system [2]. On the other side, in certain areas
of image processing, the introduction of artificial blur can bring a more
realistic virtual environment as well as enhanced visual experience [3].
Methods capable to detect, estimate or classify various types of blur
distortion have received increasing attention in the field of image
segmentation [4], blur estimation [5,6], sharpness assessment [7] and
deblurring [8]. Regardless of the application, an efficient computa-
tional model capable to quantify the blur distortion and thus, estimate
the image sharpness, can certainly optimize the quality of proliferating
visual services.

The human visual system (HVS) is the most reliable estimator of
image sharpness; however, the complex and time-consuming evaluation
process makes it inapplicable in the real-world image processing en-
vironment [9]. The solution to this problem lies in the objective models
capable to automatically estimate image sharpness [10]. This objective
assessment ecosystem consists of full-reference (FR), reduced reference
(RR) and no-reference (NR) methods where differentiation is based on

the availability of reference or undistorted image [11]. Unlike FR and
RR methods, no-reference or blind image assessment methods predict
the image sharpness without the need for reference image. Accordingly,
the NR methods are the most interesting due to their applicability in
real-time visual systems where reference images are rarely accessible
[12].

The early work in blind image sharpness assessment was mainly
performed in the spatial domain. It was based on measurement of edge
widths [13] where additional improvements were achieved by using
perceptual features based on just noticeable blur (JNB) [14] and cu-
mulative probability of blur detection (CPBD) [15]. Bahrami and Kot
[16] estimate sharpness by measuring the spread of maximum local
variation (MLV) coefficients. In [17] authors use the local Michelson
contrast and energy map elements in an autoregressive (AR) space.
Additional gains were demonstrated using the general-purpose image
quality assessment (IQA) methods based on neural networks [18,19]
and machine learning [20]. In [21] image sharpness is measured using
the block energy of sparse coefficients normalized with block variances.
Li et al. [22] exploit the Tchebichef moments computed from the image
gradient maps, while authors in [23,24] take the Singular Value De-
composition (SVD) approach to assess the image sharpness. The
sharpness methods in transform domain observe the statistics and en-
ergy information of Discrete Cosine Transform (DCT) coefficients to
quantify the strength of blur distortion [25,26]. Some authors observe
and parameterize Steerable Pyramid Wavelet Transform (SPWT) coef-
ficient distributions in order to extract the statistics and form a feature
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vector relevant for sharpness assessment [27]. Authors in [28–30] ob-
serve the local phase coherence of an image to measure the blurriness.
In [31], authors proposed a sharpness index expressed as a weighted
sum of sub-band log-energies computed in a multi-scale Discrete Wa-
velet Domain (DWT). Finally, hybrid methods observe and combine the
blur features extracted from the spatial and transform domain [32]. Li
et al. [33] employ sharpness features extracted from multi-scale spa-
tial/frequency domains in combination with the machine learning
model, while Zhang et al. [34] use NSS based features with learned
multivariate Gaussian model to measure other image distortions as
well.

Our goal is to build an efficient blind computational model capable
to: identify the blur distortion signature, quantify the level of distortion,
and estimate the perceived image sharpness/blurriness. We observe the
influence of isotropic blur on local contrast statistics in the spatial and
frequency domain as well as its implications on perceived image
sharpness/blurriness. Contrast has been used as a constituent feature in
many IQA models. As part of the structural similarity paradigm, the
local standard deviation based contrast was used within full reference
models operating in single-scale [35] and multi-scale spatial domain
[36]. In the blind image assessment environment, changes in contrast
were accounted by measuring the total [32] or maximum local varia-
tion in image intensities [16]. The gradient magnitudes (GM) and La-
placian of Gaussian (LOG) responses were also successfully employed as
local spatial contrast features in [37]. Some authors use locally com-
puted Michaelson contrast in the autoregressive space [17], while
others observe the transform domain to extract DCT [38] or DWT [39]
based local contrast features.

Our model builds upon the perceptual contrast sensitivity me-
chanism which has a fundamental role in the visual information pro-
cessing, especially in terms of discrimination of spatial and temporal
patterns falling onto the retina. We use the local root-mean-square

(RMS) contrast measure, to generate contrast image maps and capture
the intensity variations across the image [40,41]. Unlike previous ap-
proaches, we introduce the concept of increased dynamic range. By
increasing the dynamic range of generated contrast maps the perfor-
mance of proposed model is significantly improved. Furthermore, we
extended our approach into the high frequency discrete wavelet space
due to the well-known fact that high frequency image components are
attenuated by blur [42]. Here, the level-shifting operation, performed
on decomposed wavelet coefficients, is introduced to further enhance
the model performance. The computed statistical parameters – in our
case percentile values – are defined as perceptually significant image
sharpness/blurriness features. The proposed model demonstrates very
high correlation with perceptual scores. If processing time in combi-
nation with prediction accuracy across all tested databases is taken into
consideration, the proposed method outperforms other state-of-the-art
image sharpness metrics. These findings were validated as part of an
extensive performance evaluation, which involved seven publicly
available blur databases.

The following section describes the proposed algorithm. In Section 3
the results of performance evaluation are given along with short de-
scription of databases and performance attributes used for model vali-
dation. Additionally, a thorough evaluation of the proposed sharpness
measure is presented including results of correlation analysis, hypoth-
esis testing and computational complexity. In Section 4, the paper ends
with the concluding remarks and future work.

2. Image sharpness assessment model

HVS encodes only relative luminance values based on its intrinsic
light adaptation mechanism [43]. The processing of visual information
is performed using a nonlinear function where only values that show
1% change in luminance are being registered and coded. This capability
expressed as the contrast sensitivity represents one of the fundamental
attributes of visual perception. Moreover, the perceptual response to an
image strongly depends on image contrast ratio which is commonly
defined as the ratio between the maximum and minimum luma1 values
[44]. In the context of image quality assessment the contrast is found to
be inextricably related to image sharpness where images with higher
contrast ratios are perceived as sharper [39]. Hence, observing and
quantifying the changes in contrast can contribute to reliable sharp-
ness/blurriness estimation [36,45]. Next, we explain how local contrast
is computed, integrated and utilized within our sharpness model.

2.1. Blind image sharpness estimation framework

The proposed BISHARP model incorporates processing in the spatial
and wavelet transform domain. The flowchart of the proposed model is
shown in Fig. 1. It is a fast and straightforward process where an image
being tested for sharpness is first converted to grayscale domain. Then,
the local contrast map is generated computing the root mean square
values in local pixel neighborhood. The generated map is transformed
to frequency domain using one-scale discrete wavelet transform. Ex-
tracted sub-band coefficients are sorted and level-shifted by the max-
imum value found in a negative valued wavelet coefficients pool. The
computed percentile value of the resulting, level-shifted wavelet coef-
ficients distribution represents the final image sharpness score. Below,
we present the 5-step framework designed to compute the image
sharpness measure.

2.1.1. Conversion to grayscale image
Step 1. The first step is conversion from color R′G′B′ to grayscale

Fig. 1. Flowchart of the proposed BISHARP model.

1 Luma is defined as a weighted sum of tristimulus R′G′B′ values obtained after pro-
cessing the linear RGB values with nonlinear gamma function. Gamma function is an
approximation of the perceptual response to luminance.
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images. The conversion is performed according to the expression
standardized in Rec. BT-601 [46] and defined in Matlab [47] as

= ′ + ′ + ′I R G B0.299 0.587 0.114 . (1)

2.1.2. Computation of local contrast
Step 2. It is well known that image regions populated with high

intensity variations carry more information weight, which in turn at-
tract more visual attention [48]. Here, we employ the local RMS con-
trast measure to capture these variations and measure the effects of
varying blur levels on image sharpness. Moreover, the additional reason
to use the RMS contrast lies in its ability to simulate the perceptual
sensitivity to contrast – in particular the perceived contrast in natural
images [49,50]. Local RMS values were brought to focus to address the
perceptual contrast response and contrast gain control mechanisms that
occur during saccadic inspection of natural images [41]. Hence, the
local contrast map is computed as

=LCM x y σ x y( , ) ( , ) ,rms loc
α (2)

where σ x y( , )loc is the local standard deviation of image intensities found
in a neighborhood centered around a pixel at location x y( , ). The dy-
namic range of the map is increased by raising each element of the
standard deviation map σ x y( , )loc to the power of α. The standard de-
viation in a local neighborhood is computed as

∑ ∑= + + −
=− =−

σ x y
mn

I x k y l μ x y( , ) 1 ( ( , ) ( , )) ,loc k K

K

l L

L
loc

2
(3)

where I x y( , ) is the intensity value of image pixel at location
x y m( , ), =2∣K∣+1 is the size of local window in vertical direction,
n=2∣L∣+1 is the size of the local window in horizontal direction and
the total number of pixels within a window is m× n. The local window
mean value is computed as

∑ ∑= + +
=− =−

μ x y
mn

I x k y l( , ) 1 ( ( , )).loc
k K

K

l L

L

(4)

Border pixels were computed using symmetric padding. Fig. 2 de-
picts the original and distorted versions of Monarch.bmp image along
with their corresponding RMS local contrast image arrays. The elements
of the new LCMrms image array, as shown in the second row of Fig. 2,
were sorted in a descending order to observe the behavior in the pre-
sence of blur. Fig. 3 depicts distributions of LCMrms generated map
coefficients for image Monarch.bmp distorted with different strengths
of Gaussian blur ranging from =σ 0.9062 to =σ 11.3333. Images are
rated with MOS2 scores ranging from 23.2355 ( =σ 0.9062) for the least
distorted image to 75.9245 ( =σ 11.3333) for the image with the highest

blur distortion. The comparison in the spatial domain clearly differ-
entiates the distributions based on the strength of applied blur.

2.1.3. Transformation to wavelet space
Step 3. Edges are important image features characterized by high in-

tensity discontinuities and variations. These variations represent the high
energy content being attenuated in the presence of blur. The same applies
to LCMrms image array where the intensity discontinuities and the changes
in frequency content are even more pronounced. In order to capture this
reduction in energy at high frequencies we moved from spatial to fre-
quency domain by performing the two-dimensional multi-scale DWT
transform. Hence, with this computationally fast image transformation we
captured, observed and analyzed the energy reduction at different scales
and orientations in order to extract an image feature sensitive to blur
distortion. Decomposition of contrast maps was performed using sym-
metric quadrature mirror filters with 9-tap filter kernels,
qmf9={0.02807382, −0.060944743, −0.073386624, 0.41472545,
0.7973934, 0.41472545, −0.073386624, −0.060944743, 0.02807382},
as defined in [51].

Hence, the local contrast maps are convolved with odd, symmetric
filter where boundary handling was performed by reflecting the
boundary pixels. Given LCMrms map is decomposed into low frequency
band made of approximation coefficients and three high frequency sub-
bands containing horizontal, vertical and diagonal wavelet coefficients,
respectively. Resulting horizontal, vertical and diagonal high-frequency
sub-bands are denoted as W W W, ,hn vn dn at decomposition level n. Our
model performs one-scale decomposition where the high frequency
diagonal coefficients are taken and used in the following, fourth step of
sharpness feature extraction process. Fig. 4 shows how diagonal high
frequency sub-band coefficients are being attenuated in the presence of
varying blur strengths.

2.1.4. Transforming level-shifted and sorted coefficients to log domain
Step 4. Next, we follow the concept proposed in [29] which puts

more emphasis on sharper image regions by ranking and weighting the
wavelet coefficients. However, before sorting the coefficients we per-
form level-shifting to accentuate the difference between different mean
blur levels. The level-shifting is performed by finding the minimum
value in the diagonal wavelet coefficient set, min{Wd1}; taking its ab-
solute value, abs(min{Wd1}) and adding it to all wavelet coefficient
magnitudes Wd1i according to

Fig. 2. The first row depicts undistorted
image Monarch (a) and its blurred versions,
(b) and (c). The second row depicts corre-
sponding LCMrms local contrast maps.

2 Subjective image quality scores provided by a sufficient number of human individuals
are averaged to produce the Mean Opinion Scores (MOS) or Difference Mean Opinion
Scores (DMOS), also regarded as a ground truth of perceived image quality.
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= + = …W W abs min W i N( ( )) 1, , .D d d1 1 1i i (5)

After sorting, the resulting level-shifted and ranked coefficient dis-
tribution is described as {WD1i ∣ i=1,2,… ,N}, where

⩾ ⩾ ⋯⩾W W WD D D1 1 1N1 2 and N represents the total number of wavelet
coefficients found in the diagonal sub-band. Since increased dynamic
range implies high wavelet coefficient values, the log transformation
using log10 function was applied to each coefficient. Thus, the existing
ranked collection of wavelet coefficients was transformed to log domain
producing the new collection of coefficients {log WD10 1i ∣ i=1,2,… ,N},
where ⩾ ⩾ ⋯⩾log W log W log WD D D10 1 10 1 10 1N1 2 . In Fig. 5(b) we show the
result of level-shifting performed on coefficient distributions shown in
Fig. 5(a). Fig. 5(c) depicts sorted wavelet coefficient distributions and
Fig. 5(d) shows the sorted coefficients in log domain along with the
extraction of sharpness measure.

2.1.5. Computation of percentile value
Step 5. At the final stage we compute the percentile value of ranked

distribution that corresponds to the blind image sharpness score. A
percentile is the coefficient value below which a certain percentage (%)
of level-shifted and ranked diagonal wavelet coefficients lie. It was
found that the highest susceptibility to blur distortion is in lower per-
centile range. In our case, the 0.25th percentile was used to compute
the BISHARP score. The sharpness score is computed according to

=BISHARP log W i( ),D10 1 (6)

where i is the rank of wavelet coefficient that is higher than 0.25% of
the sorted wavelet coefficients. The Matlab’s prctile function was ap-
plied to compute the objective scores.

Algorithm 1. The proposed BISHARP algorithm

Data: Input color image I
Result: Sharpness score BISHARP
Initialization: Set α =3.75, p= .25, window size n=3 pixels
Step 1: Convert RGB to grayscale image using Eq. (1)

Fig. 3. Comparison of sorted LCMrms coefficient distributions obtained using 3-by-3 window size. (a) Original Monarch image and its distorted versions. (b) LCMrms coefficient dis-
tributions corresponding to images on the left.

Fig. 4. (a) Original Monarch.bmp image and its distorted versions framed with different colors corresponding to different levels of blur distortion. (b) Distributions of high frequency
diagonal wavelet coefficients (Wd1) for original and distorted versions of Monarch.bmp. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Step 2: Compute the increased dynamic range LCMrms map using
Eq. (2)
Step 3: Compute DWT transform to extract diagonal wavelet
coefficients
Step 4: Transform the level-shifted (Eq. (5)) and sorted diagonal
wavelet coefficients to log10 domain
Step 5: Compute sharpness score BISHARP using Eq. (6)

In this section we observed how blur affects the distribution of local
contrast map elements in both, spatial and frequency domain. Based on
this analysis, we have extracted the sharpness features susceptible to
varying levels of blur distortion. The percentile value of ranked, level-
shifted, high frequency wavelet coefficients is defined as a perceptually
significant feature capable to estimate image sharpness. The sharpness
score based on local RMS contrast map is summarized in Algorithm 1.

3. Experimental results and discussion

In this section we give an overview of the testing environment and
performance metrics necessary to validate the proposed model. Finally,
the results of hypothesis testing are presented to show the relationship

among tested methods.

3.1. Image databases

The proposed model was evaluated on seven publicly available
databases. The first blurred image dataset consisted of images found in
six conventional databases including LIVE Image Quality Assessment
Database (Release 2) [52,53], Categorical Subjective Image Quality
Database – CSIQ [54], Tampere Image Database 2008 – TID2008 [55],
Tampere Image Database 2013 – TID2013 [56], VCL@FER image
quality assessment database [57] and IRCCyN/IVC Image Quality Da-
tabase [58]. It is worth noting that blurred images within LIVE,
TID2008 and TID 2013 database were introduced with the wraparound
error due to Gaussian filtering operation applied to reference images.
This wraparound error was removed by cropping the image edges by 6
pixels. The second blurred image dataset was taken from Waterloo
Exploration Database [59] which consists of 4744 original images and
28464 images blurred at five evenly distributed distortion levels. Unlike
other databases, the subjective scores of images were not provided;
however, three new test criteria were proposed to test the model ro-
bustness and generalization capability in the real-world environment.

Fig. 5. (a) High frequency wavelet coefficient distributions corresponding to varying blur strengths. (b) Level-shifted high frequency diagonal coefficient distributions (WD1). (c) Sorted
level-shifted coefficient distributions. (d) Coefficient distributions in the log domain.
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3.2. Evaluation metrics

The performance evaluation of the proposed objective model was
conducted according to the Video Quality Experts Group (VQEG) re-
commendation [60]. A number of performance attributes and corre-
sponding metrics were measured to determine how well the proposed
objective method predicts the image sharpness. Based on subjective and
objective data sets the prediction monotonicity is determined using
Spearman Rank Order Correlation Coefficient (SROCC) and Kendall
Rank Order Correlation Coefficient (KROCC). SROCC is defined as

= −
∑

−
=SROCC

d
N N

1
6

( 1)
,i

N
i1
2

2 (7)

where di represents the difference between ranks of subjective and
objective scores for i-th image, N is the number of scores. KROCC is
defined according to the following expression:

= −
−

KROCC N N
N N
2( )

( 1)
,c d

(8)

where Nc and Nd represent concordant and discordant sample pairs,
respectively. Determining other performance attributes such as pre-
diction accuracy and prediction consistency required additional data set
adjustment. Hence, before computing prediction accuracy via Pearson
Linear Correlation Coefficient (PLCC); prediction consistency via Out-
lier Ratio (OR); Outlier Distance (OD) as well as other metrics expressed
through Root Mean Square Error (RMSE), Mean Absolute Error (MAE);
the data fitting using a non-linear regression was performed. The result
of the non-linear data fitting is an analytical expression which describes
the functional relationship between observed and predicted variables.
Here, the 5-parameter logistic function was used

= ⎛
⎝

− ⎞
⎠

+ +−y x β
e

β x β( ) 1
2

1 ,p β x β1 ( ) 4 52 3 (9)

Table 1
Results of performance evaluation on six conventional databases.

Database LIVE CSIQ

Parameter PLCC SROCC KROCC RMSE MAE PLCC SROCC KROCC RMSE MAE OR OD

NIQE 0.9246 0.9427 0.8011 8.2864 6.2570 0.8832 0.8736 0.6981 0.1344 0.1007 0.3267 3.9053
ILNIQE 0.8850 0.9109 0.7492 10.1279 7.9976 0.7039 0.8295 0.6430 0.2035 0.1529 0.4400 9.8805
SSEQ 0.9574 0.9503 0.8141 6.2823 5.0238 0.8327 0.8395 0.6494 0.1587 0.1262 0.3533 5.8482
dipIQ 0.9356 0.9512 0.8112 7.6775 5.9420 0.9203 0.8997 0.7294 0.1121 0.0805 0.2267 2.4871
SPARISH 0.9680 0.9727 0.8626 5.4585 4.1214 0.8603 0.8864 0.7131 0.1734 0.1396 0.4133 6.4552
LPC-SI 0.9178 0.9223 0.7668 8.6362 6.7060 0.9213 0.9024 0.7362 0.1115 0.0821 0.26667 2.4304
MLV 0.9630 0.9575 0.8293 5.8620 4.6623 0.8759 0.9074 0.7435 0.1383 0.1081 0.3600 5.1041
CPBD 0.9041 0.9360 0.7915 9.2953 7.0974 0.8102 0.8636 0.6817 0.1680 0.1346 0.3867 6.9381
S3 0.9462 0.9438 0.8015 7.0353 5.6260 0.7703 0.8860 0.7017 0.1827 0.1495 0.4467 8.8776
FISH 0.9191 0.9278 0.7674 8.5696 6.8382 0.8516 0.8703 0.6997 0.1502 0.1179 0.3667 5.5567
FISHbb 0.9557 0.9603 0.8353 6.3998 5.1050 0.8929 0.8939 0.7262 0.1290 0.1004 0.3133 3.7185
ARISM 0.9616 0.9666 0.8419 5.9673 4.7008 0.9053 0.8999 0.7265 0.1217 0.0879 0.2733 2.9064
ARISMc 0.9648 0.9699 0.8509 5.7235 4.4634 0.9046 0.9056 0.7362 0.1221 0.0890 0.2533 2.9625
BISHARP 0.9614 0.9611 0.8388 5.9818 4.4647 0.9186 0.9125 0.7485 0.1132 0.0851 0.2733 2.6321

VCL@FER TID2008

PLCC SROCC KROCC RMSE MAE PLCC SROCC KROCC RMSE MAE OR OD

NIQE 0.8870 0.8913 0.7038 11.2468 8.8462 0.7844 0.7711 0.5586 0.7279 0.5732 0.7600 36.1733
ILNIQE 0.8338 0.8491 0.6496 13.4456 10.7660 0.8341 0.8258 0.6095 0.6473 0.5105 0.7100 30.7650
SSEQ 0.8977 0.8839 0.7013 10.7298 8.2127 0.8109 0.8030 0.6051 0.6867 0.5320 0.7200 32.7538
dipIQ 0.9416 0.9402 0.7785 8.2022 6.7147 0.8940 0.8971 0.7199 0.5258 0.4178 0.6700 22.1713
SPARISH 0.9388 0.9302 0.7622 8.3879 0.6556 0.8877 0.8844 0.6969 0.5403 0.4109 0.6600 21.9538
LPC-SI 0.9161 0.9147 0.7470 9.7662 7.3332 0.8921 0.8960 0.7155 0.5302 0.4188 0.6300 21.6874
MLV 0.8901 0.8791 0.7097 11.1034 8.1238 0.8558 0.8528 0.6508 0.6071 0.4669 0.6800 26.7230
CPBD 0.9289 0.9227 0.7482 9.0217 7.2636 0.7644 0.7774 0.5691 0.7566 0.5763 0.6800 37.3372
S3 0.9048 0.8507 0.6619 10.3739 8.3317 0.7994 0.7709 0.5351 0.7051 0.5431 0.6800 33.0813
FISH 0.8865 0.8784 0.6936 11.2688 8.4029 0.8074 0.7922 0.5630 0.6923 0.5517 0.7000 34.6953
FISHbb 0.9218 0.9120 0.7381 9.4448 7.0956 0.8378 0.8255 0.6014 0.6407 0.5044 0.6800 29.8311
ARISM 0.9432 0.9259 0.7561 8.0918 6.7420 0.8358 0.8426 0.6443 0.6444 0.5019 0.7100 29.4547
ARISMc 0.9462 0.9306 0.7626 7.8852 6.5196 0.8502 0.8622 0.6665 0.6177 0.4858 0.7300 27.7392
BISHARP 0.9066 0.8976 0.7180 10.2797 7.8229 0.8911 0.8850 0.6932 0.5326 0.4157 0.6300 22.0558

IVC TID2013

PLCC SROCC KROCC RMSE MAE PLCC SROCC KROCC RMSE MAE OR OD

NIQE 0.8078 0.8036 0.6455 0.6729 0.5298 0.8230 0.7692 0.5649 0.7089 0.5747 0.7680 45.6378
ILNIQE 0.9074 0.8510 0.6773 0.4797 0.4065 0.8396 0.8318 0.6258 0.6779 0.5489 0.7440 42.9001
SSEQ 0.9026 0.8239 0.6667 0.4914 0.3793 0.8251 0.8219 0.6227 0.7050 0.5588 0.7440 44.0241
dipIQ 0.8112 0.7585 0.5185 0.6676 0.5195 0.9201 0.9178 0.7464 0.4886 0.3846 0.6080 24.7042
SPARISH 0.9403 0.9398 0.8042 0.3885 0.3180 0.9006 0.8916 0.7014 0.5424 0.4323 0.6400 29.3439
LPC-SI 0.9700 0.9564 0.8466 0.2776 0.1931 0.9165 0.9202 0.7484 0.4992 0.3943 0.5920 25.7714
MLV 0.9777 0.9767 0.8889 0.2399 0.1743 0.8802 0.8762 0.6795 0.5921 0.4640 0.6720 32.6495
CPBD 0.8011 0.7690 0.6138 0.6834 0.5151 0.8195 0.8170 0.6067 0.7151 0.5646 0.7280 44.8457
S3 0.8271 0.8691 0.7090 0.6417 0.5245 0.8482 0.8269 0.5992 0.6609 0.5248 0.7040 40.1041
FISH 0.9585 0.9323 0.7937 0.3256 0.2658 0.8327 0.8102 0.5878 0.6910 0.5735 0.8000 45.1325
FISHbb 0.9447 0.9187 0.7513 0.3742 0.2865 0.8662 0.8506 0.6299 0.6236 0.5121 0.7680 37.9583
ARISM 0.8598 0.7863 0.6138 0.5830 0.4274 0.8922 0.8948 0.7094 0.5636 0.4464 0.7120 30.6371
ARISMc 0.8766 0.8089 0.6349 0.5494 0.4032 0.8963 0.8989 0.7136 0.5533 0.4463 0.6960 30.6333
BISHARP 0.9776 0.9797 0.8995 0.2405 0.1771 0.9089 0.9088 0.7254 0.5203 0.4161 0.6400 28.1512
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(a) LIVE (b) VCL@FER (c) IVC (d) CSIQ (e) TID2008 (f) TID2013

Fig. 6. Scatter plots of subjective versus objective scores.
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where x denotes the objective scores before regression whereas yp de-
notes the predicted MOS/DMOS scores after regression; β β β β, , ,1 2 3 4 and
β5 are parameters depending on y (MOS/DMOS) value range and initial
value set depending on the used database. The data set values after non-
linear regression are usually depicted on a scatter plot providing a vi-
sual representation of the relationship. The PLCC metric measures the
prediction accuracy attribute according to the following expression
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∑ − ∑ −
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(10)

where ypi represents the predicted score for i-th image, yp represents the
average of predicted objective scores, yi is the subjective score for i-th
image and y is the mean value of all subjective scores. Outlier Ratio
measures the prediction consistency according to the following ex-
pression

=OR N
N

,o
(11)

where No is the number of outliers, data points or ypi values that lie
outside of the 95% confidence interval constrained by two standard
deviations σyi; where σyi is a standard deviation of all subjective ratings
for a given i-th image. Outliers are defined as values outside of the
confidence interval

− >y y σ| | 2 .pi i yi (12)

Furthermore, the outlier distance measure proposed in [54] was
used as one of the performance metrics. It measures the distance of an
outlier data points from the closest error bar ± σ2 yi. The outlier distance
is defined as

∑= − − − +
∈

OD min y y σ y y σ(| 2 |,| 2 |).
x X

pi i y pi i y
o

i i
(13)

where Xo is the set of predicted scores lying outside of confidence in-
terval, ypi is predicted score or outlier for i-th image and yi is subjective
score for i-th image. OD cannot be used for comparison among data-
bases which use different subjective scores metric, e.g. DMOS vs MOS
database. RMSE metric measures the average error between subjective
and predicted scores providing the information about the variance of
data sets
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whereas MAE metric is defined as

∑= −
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Additionally, three test criteria introduced in [59] were employed to
compare the methods. The first, discriminability test (D-test) evaluates
the model’s ability to distinguish the original from distorted images.
Before determining the model discriminability, indices i of all images in
a given database are grouped into sets So and Sd representing original
and distorted image indices, respectively. Then, threshold T is used to
separate images according to ′So ={i∣ >y Tpi

} and ′Sd ={i∣ ⩽y Tpi
}. Based

on this classification the average classification rate R is defined as
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With optimized value T and maximum R the discriminability index
is defined as

=D R Tmax ( ).
T (17)

D lies in the interval [0–1] where higher values correspond to better
discriminability.

The second test is the listwise ranking consistency test (L-test). This
test evaluates the model’s ability to monotonically estimate the image
sharpness with the increasing strengths of blur distortion. The L-test
value represents the mean of all SROCC/KROCC values computed be-
tween the total number of distortion levels and the corresponding
quality scores for each image in a given database. The L-test using
SROCC values is defined as

∑ ∑=
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and the L-test using KROCC values is defined as
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where S is the number of images in a given database, K is the number of
distortion types, ypij

represents the set of predicted scores at distortion
levels lij that are obtained by a given model on the same i-th original
image and the same j-th distortion type. The third test is the pairwise
preference consistency test (P-test). It measures the model’s ability to
accurately determine the pairwise prediction preference. P-test is de-
fined according to the following expression

=P M
M

,c
(20)

where M is the total number of generated quality-discriminable image
pairs (DIPs) in a given database whose absolute MOS/DMOS difference
are greater than a predefined threshold T. Mc is the number of con-
cordant pairs found in a DIP set. P lies in the interval [0–1] where
higher values correspond to better P-test performance.

Table 2
The weighted and direct average results of performance evaluation across all databases.
Two best performing methods were highlighted.

Method PLCCw SROCCw KROCCw PLCCd SROCCd KROCCd

MLV 0.9009 0.9029 0.7377 0.9071 0.9029 0.7503
CPBD 0.8514 0.8699 0.6906 0.8380 0.8476 0.6685
S3 0.8594 0.8661 0.6770 0.8493 0.8579 0.6681
NIQE 0.8674 0.8591 0.6798 0.8517 0.8419 0.6620
IL-NIQE 0.8220 0.8539 0.6636 0.8340 0.8497 0.6591
SSEQ 0.8736 0.8667 0.6896 0.8711 0.8537 0.6765
FISH 0.8685 0.8661 0.6787 0.8760 0.8685 0.6842
FISHbb 0.9030 0.8971 0.7214 0.9032 0.8935 0.7137
ARISM 0.9131 0.9092 0.7428 0.8997 0.8860 0.7153
ARISMc 0.9176 0.9162 0.7529 0.9064 0.8960 0.7275
LPC-SI 0.9158 0.9135 0.7482 0.9223 0.9187 0.7601
SPARISH 0.9154 0.9183 0.7576 0.9160 0.9175 0.7670
dipIQ 0.9214 0.9191 0.7548 0.9038 0.8941 0.7173
BISHARP 0.9229 0.9189 0.7571 0.9274 0.9241 0.7706

Table 3
Results of average run times obtained while processing the blurred image database.

Method FISH BISHARP MLV NIQE LPC-SI CPBD FISHbb SSEQ dipIQ IL-NIQE SPARISH ARISMc S3

Average time (sec) 0.11 0.13 0.17 0.27 1.04 1.14 3.98 5.85 6.32 9.83 15.32 66.76 79.60
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3.3. Metrics comparison

The proposed method was compared to thirteen blind image
sharpness metrics. Our BISHARP3 method was tested against (1) MLV
[16]; (2) CPBD [61]; (3) S3 [32]; (4) LPC-SI [29,30]; (5) SSEQ [62]; (6)
FISH [31]; (7) FISHbb – block based FISH [31]; (8) ARISM [17], (9)
ARISMc – ARISM in YIQ color space [17]; (10) SPARISH [21]; (11)
dipIQ [19]; (12) NIQE [63] and (13) IL-NIQE [34]. The dipIQ, NIQE, IL-
NIQE and SSEQ are learning based methods that belong to the general-
purpose image quality metrics designed for other distortions as well. All
above mentioned methods and corresponding source codes were pub-
licly available and easily accessible. No modifications were made to the

original Matlab codes provided by authors. The results of the perfor-
mance evaluation are shown in Table 1. Two best evaluation results are
highlighted with boldface, while machine learning methods are itali-
cized. It is worth mentioning that the SPARISH method is also italicized
because it uses an overcomplete dictionary trained on the LIVE data-
base. In general, the blind image sharpness metrics based on machine
learning tools are sensitive to the image databases used for training
[33].

BISHARP demonstrated high prediction accuracy, monotonicity and
consistency on all tested databases. In comparison with three general-
purpose metrics, namely SSEQ, NIQE and IL-NIQE, the BISHARP model
showed to be superior on all six databases. However, the fourth tested
general-purpose method, namely dipIQ showed to be slightly better on
TID2008, TID2013 and VCL@FER. The best results were obtained on
CSIQ database for SROCC/KROCC performance attributes. Performance
evaluation on the LIVE database showed slightly worse results in
comparison to SPARISH and ARISMc. In case of VCL@FER database the

Fig. 7. SROCC values obtained at different wavelet sub-bands for (a) LIVE, (b) VCL@FER, (c) IVC, (d) CSIQ, (e) TID2008 and (f) TID2013 database. Sub-bands are ordered from left to
right: horizontal – W W W, ,H H H1 2 3; vertical – W W W, ,V V V1 2 3; diagonal – W W W, ,D D D1 2 3; low frequency sub-band at third level (WA3).

Fig. 8. SROCC values as a function of varying local window size and exponent α for
diagonal sub-band extracted after DWT transform of RMS based local contrast maps.

Fig. 9. SROCC as a function of different percentile values for TID2013 database.

3 A MATLAB code computing the BISHARP objective scores is available for download
from the Video Communication Laboratory website at http://www.vcl.fer.hr/quality/.
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values obtained by BISHARP model fall in the mid results range. In case
of IVC database, the MLV metric is competitive to BISHARP. Both
methods reached very high correlation coefficients – PLCC/SROCC
value pair for BISHARP is 0.9776/0.9797, while for MLV the value pair
is 0.9777/0.9767. It should be noted that the IVC database – although
small in size – represents a demanding database for existing image
sharpness metrics. For example, ARISM and dipIQ methods were not
able to keep the high performance level when tested on IVC. In addi-
tion, as a visual representation of performance evaluation the scatter
plots of objective vs subjective scores after non-linear regression are
provided in Fig. 6.

Moreover, to provide an overall performance comparison, we
compute the weighted PLCC, SROCC and KROCC performance metrics
for all databases. Hence, the overall correlation coefficients were
computed as

=
∑

∑
=

=

CC
w CC

w
,w
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i i

i
N

i

1

1 (21)

where CCi represents the correlation score for the i-th database, N is the
total number of tested databases and the weighting factors were de-
termined by number of blurred images in each image database.
Weighting factors, =w {174,138,20,150,100,125}i , correspond to data-
bases lined up in the following order: LIVE – 174, VCL@FER – 138, IVC
– 20, CSIQ – 150, TID2008 – 100, TID2013 – 125. Besides weighted
average we also compute the direct average for overall performance

comparison. The direct average is computed as the mean value of re-
sults obtained on all databases. The results of overall performance are
shown in Table 2.

From Table 2 we can conclude that the proposed BISHARP method
outperforms other state-of-the-art methods with the exception of
weighted KROCC result obtained by SPARISH and weighted SROCC
obtained by dipIQ. Hence, BISHARP is highly accurate, monotonic and
consistent in sharpness estimation across different databases. In case of
direct average results the BISHARP method turned out to be the best
performing sharpness metric. In terms of overall performance com-
parison, the SPARISH, ARISMc, ARISM and dipIQ methods highly cor-
relate with human scores; however at the expense of increased com-
putational complexity, as can be seen in Table 3.

3.4. Influence of parameters on performance metrics

The results of performance evaluation were affected by selected
DWT level and sub-band, size of local pixel neighborhood, exponent α
and percentile values. Hence, the model performance was observed at
different DWT sub-bands while increasing the size of local window size,
dynamic range and percentile values. As shown, the best alignment
with the results of subjective measurement was obtained for BISHARP
at 3-by-3 window size, 0.25th percentile and exponent α =3.75. This
combination of local neighborhood size, pth percentile and dynamic
range produced the best SROCC values and thus, was integrated within
the proposed image sharpness assessment model. The SROCC value was

Fig. 10. The results of Listwise ranking consistency test based on average SROCC (a) and average KROCC (b), Discriminability test (c) and Pairwise preference test (d).
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used for comparison because it describes the relationship between the
two data sets before non-linear regression. Thus, the influence of dif-
ferent data fitting functions was avoided. First, we observe the influ-
ence of DWT sub-bands on performance metrics.

3.4.1. Impact of DWT sub-band
To observe the impact of different wavelet sub-bands on perfor-

mance metrics the three-scale DWT transform was performed to de-
compose the local contrast maps. As a result of decomposition we ob-
tained nine high frequency sub-bands (horizontal – W W W, ,H H H1 2 3;
vertical – W W W, ,V V V1 2 3; diagonal – W W W, ,D D D1 2 3) and a low frequency
sub-band at third level (WA3).

For each of the sub-bands including the low frequency sub-band the
SROCC value was computed at 3-by-3 window size, α =3.75 and
0.25th percentile. The SROCC values were computed for all six con-
ventional databases. The results of analysis for BISHARP are shown in
Fig. 7. We can see that the performance decreases with higher de-
composition levels; which is expected due to loss of high frequency
components at higher decomposition levels.

3.4.2. Impact of window size
Influence of local window size on model’s performance was tested

using four different window sizes defined in 3-by-3, 5-by-5, 7-by-7 and 9-

by-9 pixel neighborhood. Fig. 8 depicts the influence of varying window
size on performance metrics obtained on IVC database using BISHARP. As
can be seen the local contrast maps generated using 3-by-3 window sizes
produced the best correlation results. The results were obtained on the IVC
database at 0.25th percentile and varying dynamic range. The perfor-
mance falls significantly when using larger window sizes.

3.4.3. Impact of dynamic range
Increasing the dynamic range improves the performance metrics

making the model’s prediction capabilities more consistent and accu-
rate. The influence of higher dynamic range on the model performance
was tested by increasing the exponent α, in steps of α ={1,2,3… ,n}.
The results are shown in Fig. 8.

3.4.4. Impact of percentile values
In order to analyze how percentile values affect the model perfor-

mance we computed the SROCC values for the complete percentile
range in steps of 0.05 percentiles. Fig. 9 depicts the SROCC values as a
function of percentile values. However, we show only a part of the
percentile range – up to 5th percentile. The highest SROCC values were
obtained in the lower percentile range. Higher percentile values re-
duced the model performance; however, not as much as above analyzed
window sizes and dynamic range.

Fig. 11. Distributions of sharpness scores between original (in blue) and distorted images (in red). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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3.5. Results of performance evaluation on the Waterloo database

The results of tests performed on Waterloo database are shown in
Fig. 10. First, the D-test was performed. The top performing methods in
D-test are S3, both ARISM versions and block based FISH, as shown in
Fig. 10(c). Our model follows these top performing methods together
with SPARISH and MLV. The lowest ability to discriminate original
from distorted images is demonstrated by general-purpose methods.
This behavior is illustrated in Fig. 11 by plotting the distributions of
sharpness scores for original and distorted images. The models with
strong discriminability such as S3 or ARISM have small overlaps be-
tween original and distorted image distributions, while models with
weak separability have visible overlaps between two distributions, as
demonstrated by general-purpose methods. Moreover, the illustration
shows that the top performing methods S3 and ARISM have lower
discriminability at higher distortion levels. Good discriminability is
manifested by BISHARP model where all five distortion levels can be
clearly seen and differentiated. The similar behavior is demonstrated by
MLV, SPARISH and FISHbb as well as by general-purpose, dipIQ and
NIQE; however, with fewer number of visible peaks/distortion levels.

BISHARP is among the top performing models in the case of L-test,
as shown in Fig. 10(a) and (b). Along with MLV, our method obtained
the highest possible LS and LK values. The prediction monotonicity
behavior is illustrated in Fig. 12 by plotting the sharpness scores as a

function of increasing blur strengths expressed in terms of standard
deviation σ ={1.2, 2.5, 6.5, 15.2, 33.2}. Hence, the sharpness scores
for each image and its distorted versions in the blur subcategory of the
Waterloo database were plotted against increasing sigma values. The
plot for each method is made of 4744 curves/image sets. The similar
approach has been taken by authors in [64,65,32,30] but with sub-
stantially fewer number of image sets. A good objective model should
be able to produce sharpness scores that monotonically follow the in-
creasing distortion levels. The smaller variation among the predicted
scores at the same blur levels combined with good monotonic predic-
tion ability reflects the better model. In that sense, we can see that the
top performing methods, MLV and BISHARP show a small variation
among curves. Methods such as CPBD, IL-NIQE and LPC-SI show in-
efficiency in discriminating severely blurred images, whereas ARISM
and FISH – although highly aligned with perceptual scores – tend to
produce ambiguous scores at higher blur distortion levels. The similar
behavior is demonstrated by SSEQ and SPARISH where sharpness es-
timation ability at higher blur levels is significantly reduced and com-
promised.

The P-test was performed on more than 100 million DIPs whose
sharpness was clearly discriminable. The total number of DIPs was
extracted from the blur subcategory of the Waterloo database using
quality scores obtained by MS-SSIM [36] and predicted MOS differ-
ences greater than threshold T=40, as determined in [59]. The highest

Fig. 12. Predicted scores as a function of increasing blur distortion expressed in σ values.
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number of correct preference predictions was obtained by dipIQ
whereas LPC-SI and BISAHRP methods showed to be very competitive
by achieving slightly inferior results, as shown in Fig. 10(d). The results
of performed tests confirmed those obtained on conventional databases.
Hence, the BISHARP model based on local contrast maps proved its
prediction monotonicity and prediction consistency.

3.6. Computational complexity

A new blurred image database was created out of images found in
six available databases. The new database, used only for computational
complexity evaluation was made out of 39 images from LIVE database,
24 from CISQ, 20 from VCL@FER and 17 from TID2013 database. The
image sizes range from 512×512, 480×720, 634× 505, 683×512
to 768×512. The experiments were performed on a notebook with
Intel Core i5 CPU at 1.70 GHz, 4 GB RAM, 64-bit operating system and
Matlab. No additional efforts or optimization techniques were used to
obtain the results in Table 3. The best run time was obtained by FISH
method (0.11 s per image), whereas the second best result, with
somewhat slower run time per image, was obtained by our BISHARP
model (0.13 s per image). The third best result is obtained by spatial
domain based MLV metric (0.17 s per image). The ARISM, ARISMc and
SPARISH objective models characterized with very high correlation
results have shown to be very time consuming – run time range is from
15.32 s/image for learning based SPARISH to 66.76 s/image for
ARISMc. The hybrid spatio-frequency based S3 metric has shown the
worst result in this run time test.

3.7. Cross validation based on statistical Significance Analysis

The performance results obtained by model being evaluated are
considered statistically significant if it is unlikely that the results were
obtained by chance. By employing the statistical significance testing we
are able to verify the objective model and relate it to other models
found in the image sharpness/blurriness ecosystem. Hence, hypothesis
test is conducted to determine whether the performance of the proposed
BISHARP is statistically better, indistinguishable or worse in compar-
ison to other considered methods. Therefore, to get a better picture of
the current image sharpness/blurriness assessment research ecosystem
a state-of-the-art methods were observed and compared.

Statistical significance testing was performed using the F-test where
the variance ratio of two data sets was observed. In our case data sets
are represented by absolute values remained after subtraction between
subjective scores (y) and predicted scores (yp) obtained after nonlinear
regression. Residuals are computed according to the following expres-
sion

= −e y y| |,metric p (22)

where emetric represents residuals of method being under observation.
With F-test the variance ratio or F-statistic is computed and observed
within the 95% confidence interval or at 5% significance level. We
hypothesize that residuals come from normal distributions with the
same variance. If that is the case the null hypothesis is accepted
meaning that the considered metrics are statistically indistinguishable.
The alternative hypothesis is that the variance of first metric is lower or
higher than the variance of the second metric. Hence, the left tailed F-
test is employed to test if the residual variance of first metric is lower
than the variance of the second metric whereas the right tailed F-test is
employed to test the opposite behavior. Results of statistical sig-
nificance testing are presented in Table 4. A symbol 0 indicates that the
row method is statistically indistinguishable to the column method. A
symbol 1 denotes that the row method is statistically better than the
column method, whereas a symbol −1 denotes that the row method is
statistically worse than the column method. In comparison to eight
tested methods, namely SSEQ, NIQE, IL-NIQE, LPC-SI, FISH, FISHbb, S3
and MLV the F-test showed that BISHARP is statistically better or

indistinguishable on all six databases. The similar behavior was de-
monstrated in comparison to remaining methods except in the case of
VCL@FER database where BISHARP showed statistical inferiority to
SPARISH, dipIQ, CPBD and both ARISM versions.

4. Concluding remarks and future work

In this paper we presented the importance of local contrast mea-
surement in estimation of image sharpness/blurriness. We observed
how local contrast map elements behave in the presence of increasing
blur distortion both, in the spatial and frequency domain. Along with
the performed analysis we presented the framework utilized to identify
and extract the image sharpness feature. Hence, the percentile value of
ranked, level-shifted high-frequency wavelet coefficients was com-
puted, extracted and defined as a perceptually significant image
sharpness feature capable to accurately estimate image sharpness. A
fast, simple and computationally efficient algorithm was developed and
validated on seven publicly available databases containing blurred
images. A thorough performance evaluation demonstrated very high
correlation with the perceptual scores. Moreover, the proposed
BISHARP model was proven to be very consistent in sharpness esti-
mation across all tested databases. These findings combined with low
computational complexity make the BISHARP model highly efficient
and effective in estimating the image sharpness.

In the scope of future work an analysis of local contrast statistics in a
multi-scale and multi-orientation transform space can be performed.
Applying BISHARP within the image segmentation research area is
worth exploring since the sharpness maps generated at lower dynamic
range represent a good foundation to differentiate the foreground/
sharp and background/blurred image areas. Furthermore, it would be
interesting to see how the extracted sharpness feature can be used in a
holistic IQA framework based on machine learning.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.jvcir.2017.11.017.
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