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ABSTRACT: Face recognition is one of the most successful applica-

tions of image analysis and understanding and has gained much
attention in recent years. Various algorithms were proposed and

research groups across the world reported different and often contra-

dictory results when comparing them. The aim of this paper is to

present an independent, comparative study of three most popular
appearance-based face recognition projection methods (PCA, ICA,

and LDA) in completely equal working conditions regarding prepro-

cessing and algorithm implementation. We are motivated by the lack
of direct and detailed independent comparisons of all possible algo-

rithm implementations (e.g., all projection–metric combinations) in

available literature. For consistency with other studies, FERET data

set is used with its standard tests (gallery and probe sets). Our results
show that no particular projection–metric combination is the best

across all standard FERET tests and the choice of appropriate projec-

tion–metric combination can only be made for a specific task. Our

results are compared to other available studies and some discrepan-
cies are pointed out. As an additional contribution, we also introduce

our new idea of hypothesis testing across all ranks when comparing

performance results. VVC 2006 Wiley Periodicals, Inc. Int J Imaging

Syst Technol, 15, 252–260, 2005; Published online in Wiley InterScience

(www.interscience.wiley.com). DOI 10.1002/ima.20059
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I. INTRODUCTION

Over the last ten years or so, face recognition has become a popular

area of research in computer vision and one of the most successful

applications of image analysis and understanding. Because of the

nature of the problem, not only computer science researchers are

interested in it, but also neuroscientists and psychologists. It is the

general opinion that advances in computer vision research will pro-

vide useful insights to neuroscientists and psychologists into how

human brain works, and vice versa. A general statement of the face

recognition problem can be formulated as follows (Zhao et al.,

2003): Given still or video images of a scene, identify or verify one

or more persons in the scene using a stored database of faces. A sur-

vey of face recognition techniques has been given by Zhao et al.,

(2003). In general, face recognition techniques can be divided into

two groups based on the face representation they use:

1. Appearance-based, which uses holistic texture features and is

applied to either whole-face or specific regions in a face

image;

2. Feature-based, which uses geometric facial features (mouth,

eyes, brows, cheeks etc.) and geometric relationships between

them.

Among many approaches to the problem of face recognition,

appearance-based subspace analysis, although one of the oldest,

still gives the most promising results. Subspace analysis is done by

projecting an image into a lower dimensional space (subspace)

and after that recognition is performed by measuring the dis-

tances between known images and the image to be recognized. The

most challenging part of such a system is finding an adequate

subspace.

In this paper, three most popular appearance-based subspace

projection methods for face recognition will be presented, and they

will be combined with four common distance metrics. Projection

methods to be presented are: Principal Component Analysis (PCA),

Independent Component Analysis (ICA), and Linear Discriminant

Analysis (LDA). PCA (Turk and Pentland, 1991) finds a set of the

most representative projection vectors such that the projected sam-

ples retain most information about original samples. ICA (Bartlett

et al., 2002; Draper et al., 2003) captures both second and higher-

order statistics and projects the input data onto the basis vectors that

are as statistically independent as possible. LDA (Belhumeur et al.,

1996; Zhao et al., 1998) uses the class information and finds a set of

vectors that maximize the between-class scatter while minimizing

the within-class scatter. Distance metrics used are L1 (City block),

L2 (Euclidean), cosine and Mahalanobis distance.

The aim of this paper is to provide an independent, comparative

study of these three projection methods and their accompanied dis-

tance metrics in completely equal working conditions. In order to

perform a fair comparison, same preprocessed images are the input

into all algorithms and the number of dimensions to be retained is

chosen following the standard recommendations. For consistencyCorrespondence to: K. Delac; E-mail: kdelac@ieee.org
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with other studies, FERET data set (Phillips et al., 2000), with its

standard test sets, is used for comparisons. This research is motivated

by the lack of direct and detailed comparisons of these three projec-

tion methods. They are rarely compared in a single paper and almost

never are all possible implementations considered (e.g., all projec-

tion–metric combinations). It is interesting to notice that the findings

of other research groups are often contradictory on this subject and

this is another important reason for performing a study of this kind.

For example, Liu and Wechsler (1999) and Bartlett et al. (2002)

claim that ICA outperforms PCA, while Baek et al. (2002) claim that

PCA is better. Moghaddam (2002) states that there is no significant

difference. Beveridge et al. (2001a) claim that in their tests LDA per-

formed uniformly worse than PCA, Martinez and Kak (2001) state

that LDA is better for some tasks, and Belhumeur et al. (1996) and

Navarrete and Ruiz-del-Solar (2002) claim that LDA outperforms

PCA on all tasks in their tests (for more than two samples per class in

training phase). All these results are in most cases given only for one

or two projection–metric combinations for a specific projection

method, and in some cases using nonstandard databases or some

hybrid test sets derived from a standard database.

The rest of this paper is organized as follows: Section II gives a

brief description of the algorithms to be compared, Section III

reports the details of methodology, Section IV presents the results

and compares our results to results of other research groups and

Section V concludes the paper.

II. ALGORITHMS

Even though projection methods and metrics used in this work are

already well known, we will include a brief description for the sake

of completeness. All three projection methods are so called sub-
space analysis methods. A 2D image G with m rows and n columns

can be viewed as a vector (after concatenating its rows or columns)

in N dimensional image space (RN¼m�n). Since space derived this

way is highly dimensional, recognition in it is unfeasible. There-

fore, recognition algorithms usually derive lower dimensional

spaces to do the actual recognition while retaining as much infor-

mation (energy) from the original images as possible. We will fur-

ther clarify this on the example from this research: the original

FERET images (after preprocessing) are the size of 60 � 50 pixels,

thus the image space dimensionality is RN¼60�50¼3000. It will be

shown that projection methods presented here will yield R270 (R224

for LDA) subspace in which the recognition will be done and in

these 270 dimensions 97.85% of original information (energy) is

retained. An example of building a general subspace appearance-

based face recognition system can be seen in Figure 1. Training of

the subspace system can be seen in the left part of the figure and the

procedure for projecting gallery images onto a subspace (projection

matrix WT) can be seen in the right part of the figure; X is a matrix

containing the images expressed as vectors in its columns, xmean –
mean image (as a vector), ~X – matrix containing mean-subtracted

images in its columns, WT – projection matrix, xg – gallery image

(as a vector). During the training phase, the projection matrix (con-

taining the basis vectors of the subspace) is calculated and then the

gallery images (the images of known persons) are projected onto

that subspace and their projections are stored in a database. Later,

in the matching phase (Fig. 2), new image is normalized, mean-sub-

tracted, projected onto the same subspace as the gallery image was

and its projection is then compared to stored gallery projections

(the nearest neighbor is determined by calculating the distances d
from a probe image projection to all gallery images projections and

then choosing the minimum distance as a similarity measure). The

identity of the most similar gallery image is then chosen to be the

Figure 1. An illustrationof general sub-
space appearance-based face recog-

nition system.

Figure 2. The matching phase of a
general subspace face recognition

system.
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result of recognition and the unknown probe image is identified. It

is important to mention that a general face recognition system can

work in two modes: (1) the identification mode where the input to

the system is an unknown face and the system reports back the

determined identity (our case) and (2) the verification mode where

the system needs to confirm or reject the claimed identity of the

input face. All our experiments are conducted for the identification

mode and the general illustration of the systems shown in Figures 1

and 2 illustrates our experiments.

A. Principal Component Analysis (PCA). In our experiments

we implemented Principal Component Analysis (PCA) procedure

as described by Turk and Pentland (1991). Given an s-dimensional

vector representation of each face in a training set of M images,

PCA tends to find a t-dimensional subspace whose basis vectors

correspond to the maximum variance direction in the original image

space. This new subspace is normally lower dimensional (t � s).
New basis vectors define a subspace of face images called face
space. All images of known faces are projected onto the face space

to find sets of weights that describe the contribution of each vector.

To identify an unknown image, that image is projected onto the face

space as well to obtain its set of weights. By comparing a set of

weights for the unknown face to sets of weights of known faces, the

face can be identified. If the image elements are considered as ran-

dom variables, the PCA basis vectors are defined as eigenvectors of

the scatter matrix ST defined as:

ST ¼
XM
i¼1

ðxi � �Þ � ðxi � �ÞT ð1Þ

where � is the mean of all images in the training set (the mean face,
Fig. 1) and xi is the ith image with its columns concatenated in a vec-

tor. The projection matrix WPCA is composed of t eigenvectors corre-
sponding to t largest eigenvalues, thus creating a t-dimensional face

space. Since these eigenvectors (PCA basis vectors) look like some

ghostly faces they were conveniently named eigenfaces (Fig. 3).

B. Independent Component Analysis (ICA). PCA considered

image elements as random variables with Gaussian distribution and

minimized second-order statistics. Clearly, for any non-Gaussian

distribution, largest variances would not correspond to PCA basis

vectors. Independent Component Analysis (ICA) (Bartlett et al.,

2002; Draper et al., 2003) minimizes both second-order and higher-

order dependencies in the input data and attempts to find the basis

along which the data (when projected onto them) are statistically in-
dependent. Bartlett et al. (2002) provided two architectures of ICA

for face recognition task: Architecture I – statistically independent

basis images (ICA1 in our experiments) and Architecture II – facto-

rial code representation (ICA2 in our experiments).

Our implementation of ICA uses the INFOMAX algorithm pro-

posed by Bell and Sejnowski and used by Bartlett et al. (2002).

PCA is used to reduce dimensionality prior to performing ICA.

C. Linear Discriminant Analysis (LDA). Linear Discriminant

Analysis (LDA) (Belhumeur et al., 1996; Zhao et al., 1998) finds the

vectors in the underlying space that best discriminate among classes.

For all samples of all classes the between-class scatter matrix SB and

the within-class scatter matrix SW are defined by:

SB ¼
Xc
i¼1

Mi � ðxi � �Þ � ðxi � �ÞT ð2Þ

SW ¼
Xc

i¼1

X
xk�Xi

ðxk � �iÞ � ðxk � �iÞT ð3Þ

where Mi is the number of training samples in class i, c is the num-

ber of distinct classes, �i is the mean vector of samples belonging

to class i and Xi represents the set of samples belonging to class i
with xk being the k-th image of that class. SW represents the scatter

of features around the mean of each face class and SB represents the

scatter of features around the overall mean for all face classes.

Figure 3. Face representations found

by PCA (eigenfaces), ICA1, ICA2, and

LDA.
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The goal is to maximize SB while minimizing SW, in other

words, maximize the ratio det|SB|/det|Sw|. This ratio is maximized

when the column vectors of the projection matrix (WLDA) are the

eigenvectors of SW
�1�SB. In order to prevent SW to become singular,

PCA is used as a preprocessing step and the final transformation is

Wopt
T ¼ WLDA

TWPCA
T.

In Figure 3 PCA-faces (eigenfaces), ICA1-faces, ICA2-faces,
and LDA-faces can be seen. These ghostly faces are basis vectors

produced by projection methods, reshaped to a matrix form of the

original image size for convenience. This is a good illustration of

the differences between subspaces derived by each of those projec-

tion methods. If we take a closer look at the basis vector representa-

tions it can be seen that PCA, LDA, and ICA2 produce global fea-

tures; every image feature is influenced by every pixel. ICA1 pro-

duces spatially localized features that are only influenced by small

parts of an image, thus isolating particular parts of faces. Logical

conclusion is that ICA1 should be optimal for recognizing facial

actions and suboptimal for recognizing temporal changes in faces

or images taken under different illumination conditions. This theo-

retical property of ICA1 will be proven by our experiments.

D. Distance Measures. Four different distance measures will be

used in comparisons: L1, L2, cosine angle (COS), and Mahalanobis

distance (MAH). Generally, for two vectors, x and y, distance meas-

ures are defined as:

dL1ðx; yÞ ¼ jx� yj ð4Þ
dL2ðx; yÞ ¼ kx� yk2 ð5Þ
dcosðx; yÞ ¼ � x � y

kxk � kyk ð6Þ

dMAHðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� yÞV�1ðx� yÞT

q
ð7Þ

where V is the covariance matrix. In the rest of this paper, we will

address the specific projection–metric combination as an algorithm.
Since we implemented four projection methods (PCA, ICA1, ICA2,

and LDA) and four distance measures (L1, L2, COS, and MAH), it

can be concluded that we will effectively compare 16 different

algorithms.

III. METHODOLOGY

A. Data. For consistency with other studies, we used the standard

FERET data set including the data partitions (subsets) for recogni-

tion tests, as described in Phillips et al., 2000. The gallery consists

of 1,196 images and there are four sets of probe images (fb, fc,
dup1, and dup2) that are compared to the gallery images in recogni-

tion stage. The fb probe set contains 1,195 images of subjects taken

at the same time as gallery images with one difference being that

the subjects were told to assume a different facial expression. The

fc probe set contains 194 images of subjects under different illumi-

nation conditions. The dup1 (duplicate I) set contains 722 images

taken anywhere between one minute and 1,031 days after the gal-
lery image was taken, and dup2 (duplicate II) set is a subset of dup1
containing 234 images taken at least 18 months after the gallery
image was taken. All images in the data set are of size 384 � 256

pixels and grayscale.

B. Preprocessing. All algorithms and all image preprocessing

steps were implemented in MATLAB1. Original FERET images

were first spatially transformed (to get eyes at fixed points in im-

agery) based upon a ground truth file of eye coordinates supplied

with the original FERET data. The standard imrotate MATLAB1

function was used with bilinear interpolation parameter. After that,

all images were cropped the same way (using the eyes coordinates)

to eliminate as much background as possible. No masking was done

since it turned out that cropping eliminated enough background and

the whole idea of this research was not to yield the best possible rec-

ognition results but to fairly compare the algorithms. After cropping,

images were additionally resized to be the size of 60 � 50 using the

standard MATLAB1 imresize function with bilinear interpolation.

Finally, image pixel values were histogram equalized to the range of

values from 0 to 255 using the standard histeq function.

C. Training. To train the PCA algorithm we used a subset of

classes for which there were exactly three images per class. We

found 225 such classes (different persons) in the FERET data set,

so our training set consisted of 3 � 225 ¼ 675 images (M ¼ 675,

c ¼ 225). PCA derived, in accordance with theory, M � 1 ¼ 674

meaningful eigenvectors. We adopted the FERET recommendation

and kept the top 40% of those, resulting in 270-dimensional PCA

subspace (40% of 674 � 270). It was calculated that 97.85% of

original information (energy) was retained in those 270 eigenvec-

tors. This subspace was used for recognition as PCA face space and

as input to ICA and LDA (PCA was the preprocessing dimensional-

ity reduction step). ICA yielded two representations (ICA1 &

ICA2) using the input from PCA (as in Bartlett et al., 2002).

Dimensionality of both ICA representations was also 270. How-

ever, LDA yielded only 224-dimensional space since it, by theory,

can produce a maximum of c � 1 basis vectors. All of those were

kept to stay close to the dimensionality of PCA and ICA spaces and

thus make comparisons as fair as possible. After all the subspaces

have been derived, all images from data sets were projected onto

each subspace and recognition using nearest neighbor classification

with various distance measures was conducted.

IV. RESULTS

Results of our experiment can be seen in Table I and Figure 4. We

used two standard ways to present the results: (1) table showing

algorithm performance at rank 1 (recognition rate within the top

one match), and (2) Cumulative Match Score (CMS) curve (Phillips

et al., 2000), showing the cumulative results for ranks 1 and higher.

One interesting thing we noticed is the discrepancy in some cases

between the rank 1 results and the CMS results when answering the

question which algorithm performs better. It was noticed that the

metric showing the best results at rank 1 did not always yield the

best results at higher ranks. Five such cases were identified (most

frequently for LDA) in this experiment. This can be seen in Table I

by comparing the bolded best algorithm–metric combinations for

rank 1 and the right two columns showing the best combinations at

higher ranks. This brings to question any analyses done by compar-

ing the CMS curves of those projection–metric combinations that

yielded the best results at rank 1. This is why we decided to show

the CMS curves for those metrics that produced best results at

higher ranks for a specific algorithm.

A. Conclusions Based on a Specific Task. fb (the different
expression task). Even though ICA2þCOS combination produces

the best results at rank 1 (Table I), LDAþCOS outperforms it from

rank 6 further on (Fig. 4). Actually, ICA2þCOS performs uni-

formly worse than other best projection–metric combinations at
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higher ranks. But, it can be stated that the remaining three projec-

tion–metric combinations (PCAþCOS, ICA1þL2, and LDAþCOS)

produce similar results and no straightforward conclusion can be

drawn regarding which is the best for this specific task. It stays

unclear whether the differences between recognition rates for this

task are statistically significant or not (we will address this issue in

Section IV(C)). ICA1 performance was comparable to PCA and

LDA and certainly better than ICA2. This confirms the theoretical

property of ICA1 mentioned in Section II(C).

fc (the different illumination task). ICA2þCOS wins here at rank

1 (Table I) but PCAþL1 is much better from rank 17 on (Fig. 4).

ICA1 is the worst choice for this task. Again, this is not surprising

since ICA1 tends to isolate the face parts and therefore should be bet-

ter at recognizing facial actions than anything else.

dup1 & dup2 (the temporal changes tasks). ICA2þCOS is the

best here at every rank (as clearly illustrated in Fig. 4) and ICA1 is

the worst. L1 norm seems to produce the best results for almost all

other projection methods for this task and it is surprising that it is so

rarely used in comparisons.

B. Metrics Comparison. L1 gives the best results in combina-

tion with PCA across all four probe sets so it can be concluded that

L2 distance metric is suboptimal for PCA (one exception being that

COS outperforms L1 for the fb set, but statistical significance

remains questionable). Following the same line of thought, it can be

concluded that COS is superior to any other metric when used with

ICA2. Actually, L2 is the best metric in only two combinations

across all probe sets and projection methods. We found this result

surprising since this was the most frequently used measure in the

past. No clear conclusion can be drawn as to which metric works

best with ICA1 and LDA and, at best, it can be stated that it

depends on the nature of the task. This tells us that no combination

of projection–metric for ICA1 and LDA are robust enough across

all tasks. MAH turned out to be the most disappointing metric in

our tests and more variants of MAH distance calculations should be

investigated (as in Beveridge et al., 2001a). If we analyze the best

results given by the CMS, the metrics ranking looks something like

this: L1 – 7 best results, COS – 6, L2 – 2, MAH – 1.

C. Evaluating the Differences in Algorithm Performance
(Hypothesis testing). We think that, when comparing recogni-

tion algorithms, it is important (yet often neglected) to answer the

following question: when is the difference in performance statisti-
cally significant? Clearly, the difference in performance of 1% or

2% could be due to pure chance, while 10% or more is probably

not. We made our conclusions so far based on our intuitive analysis

of the data (recognition rate percentage was higher or the curve on

the plot appeared higher). However, we felt the need to investigate

these intuitive presumptions using standard statistical hypothesis

testing techniques. Generally, there are two ways of looking at the

performance difference (Jambor et al., 2002): (1) determine if the

difference (as seen over the entire set of probe images) is signifi-

cant, (2) when the algorithms behave differently, determine if the

difference is significant. As argued by Jambor et al. (2002 the first

way to evaluate performance difference fails to take the full advant-

age of the standard face recognition protocol, so we will focus on

the second way and set our hypotheses like this: H1: when algo-

rithms A and B differ on a particular image, A is more likely to cor-

rectly identify that image, H0: when algorithms A and B differ on a

particular image, they are equally likely to identify that image cor-

rectly. In order to perform this test we recorded which of the four

possible outcomes, when comparing two algorithms (SS – both suc-

cessful, FF – both failed, FS – first one failed and the second one

succeeded, SF – first one succeeded and the second one failed), is

true for each probe image. Following the lead of Beveridge et al.,

2001b; Jambor et al., 2002 we employed McNemar’s Test with the

Table I. Performance across four projection methods and four metrics.

Projection

Results at Rank 1 (%)

CMS ResultsMetric

L1 L2 MAH COS Highest Curve Same as Rank 1

Fb

PCA 82.26 82.18 64.94 81.00 PCAþCOS F

ICA1 81.00 81.51 64.94 80.92 ICA1þL2 T

ICA2 64.94 74.31 64.94 83.85 ICA2þCOS T

LDA 78.08 82.76 70.88 81.51 LDAþCOS F

Fc

PCA 55.67 25.26 32.99 18.56 PCAþL1 T

ICA1 18.04 17.53 32.99 12.89 ICA1þL1 F

ICA2 15.98 44.85 32.99 64.95 ICA2þCOS T

LDA 26.80 26.80 41.24 20.62 LDAþL2 F

Dup1

PCA 36.29 33.52 25.62 33.52 PCAþL1 T

ICA1 32.55 31.86 25.62 32.27 ICA1þL1 T

ICA2 28.81 31.99 25.62 42.66 ICA2þCOS T

LDA 34.76 32.96 27.70 33.38 LDAþL1 T

Dup2

PCA 17.09 10.68 14.53 11.11 PCAþL1 T

ICA1 8.97 7.69 14.53 8.97 ICA1þMAH T

ICA2 16.24 19.66 14.53 28.21 ICA2þCOS T

LDA 16.24 10.26 16.67 10.68 LDAþL1 F

Left part contains the results for rank 1 and the best projection–metric combinations are bolded. Right part contains are the best CMS results obtained by determining which metric
gives the highest curve for a specific projection method at a specific probe set.
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0.05 cutoff assumed. This test ignores the cases where both com-

pared algorithms behave the same (SS or FF) and only uses the out-

comes where they behave differently (SF and FS). Let nSF be the

number of times the SF is observed and nFS the number of times FS
is observed. We are interested in the one-sided version of this test

so the probability of H0 is bounded by:

PH0 �
XnFS
i¼0

n!

i!ðn� iÞ! 0:5
n ð8Þ

where n ¼ nSF þ nFS. In other words, H0 will be rejected in favor

of H1 if PH0 � 0.05. So far, this test was usually performed only at

rank 1 so we decided to expand it to all ranks and to plot the results

as a step curve (Figs. 5–8).

Using the described methodology we first checked if our choice

of best metric for a specific projection method was correct. We con-

firmed our choices of the highest curves and found that the choice

was correct or, at least, that there is no significant difference

between the chosen metric and the second best metric. Thus, the

CMS curves compared in Figure 4 are truly the best choices of a

projection–metric combination for a given task. Next, we plotted

the decision graph based on McNemar’s Test (Figs. 5–8) for all

CMS curves given in Figure 4. All possible comparison combina-

tions are given thus yielding six plots for every probe set.

As expected, the most complicated situation is for the fb probe set
(Fig. 5). Here we claimed that LDAþCOS outperforms ICA2þCOS

from rank 6 further on but this is obviously true only from rank 9 fur-

ther on. For other combinations we confirmed our presumption that

there is no significant difference in performance (Fig. 5).

Situation is a little less complicated for the fc probe set (Fig. 6). For
example, we can see that there is no significant difference between

ICA2þCOS and LDAþL2 from rank 25 on and yet the CMS curve in

Figure 4 is always higher for ICA2þCOS. We also claimed that

PCAþL1 is better than ICA2þCOS from rank 17 on. This is not quite

true since it can be seen in Figure 6 that the difference becomes signifi-

cant only from rank 27 further on. However, Figure 6 confirms the

statement that ICA1 is the worst choice for this task.

It can be seen that for dup1 (Fig. 7) and dup2 set (Fig. 8) every-

thing is relatively clear and all our previous conclusions are con-

firmed by this test.

We can state that our previous overall conclusions regarding the

relative performance were confirmed by this hypothesis testing

technique and some new conclusions were drawn regarding the

exact rank in which the differences become significant.

D. Comparison to Previous Work. It is worth mentioning at

this point that most of the papers we will compare our results to do

not use standard FERET test sets, but this should not be a problem

since we will make the comparisons to their results based on the

relative performance.

First of all, we can state that our results are consistent to that

of Phillips et al. (2000) regarding the relative ranking of probe

sets. fb was found to be the easiest (highest recognition rates)

and dup2 the hardest (lowest recognition rates). This is in clear

Figure 4. Cumulative Match Score (CMS curve) plots of best projection–metric combinations (the ones that yielded the highest curve when all

metrics were compared for a specific algorithm) for a given probe set.
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contradiction with Beak et al. (2002) who stated that fc is the

hardest probe set. Also consistent with Phillips et al. (2000) is

that LDAþCOS outperforms all others for the fb set (or at least

that there is no significant difference). Both Phillips et al. (2000)

and Draper et al. (2003), when comparing PCA and ICA, claim

that ICA2 outperforms PCAþL2 and this is what we also have

found. However, our detailed research also produced some new

conclusions: (1) PCAþCOS outperforms ICA2þCOS for fb probe

set at higher ranks and (2) PCAþL1 outperforms ICA2�COS for

fc probe set at higher ranks (this is also confirmed by hypothesis

testing in Figs. 5–6). Those new conclusions are consistent to that

of Bartlett et al. (2002) who favor ICA2 over PCA (actually,

mostly on difficult time-separated images), but we disagree with

their claim that ICA2 is better for the different expression task

also. As stated by Bartlett et al. (2002), we also found that ICA2

gives best results when combined with COS. Navarrete and Ruiz-

del-Solar (2002) claim that LDAþCOS works better than PCA,

which is certainly not the case here at rank 1 and is questionably

true for higher ranks. We agree with Moghaddam (2002) who

stated that there is no significant difference between PCA and

ICA at rank 1, but we think that ICA is significantly worse at

higher ranks.

Figure 5. Hypothesis testing for the fb probe set—comparing the best projection–metric combinations from Figure 4. 1 or �1 means that one

or the other algorithm is significantly better at a given rank and 0 means that there is no significant difference.

Figure 6. Hypothesis testing for the fc probe set—comparing the best projection–metric combinations from Figure 4. 1 or �1 means that one

or the other algorithm is significantly better at a given rank and 0 means that there is no significant difference.
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Among the most surprising results was the poor performance of

LDA in some cases. Contrary to FERET’s report in (Phillips et al.,

2000) where the LDA implementation from UMD performed con-

sistently better than the baseline PCA (Turk and Pentland, 1991),

we found that this is not true in our experiments. However, the

FERET test did not measure the effect that individual algorithm’s

parts (components) have on overall performance and it did not con-

cern with algorithm implementation details. One of the most impor-

tant parts of design and implementation of an algorithm is the train-

ing stage. It is unclear from Phillips et al., 2000 (and also from Zhao

et al., 1998) exactly how was the LDA trained. Zhao et al. (1998) it

is stated that the algorithm is trained using the 1038 FERET images

from 444 classes and in (Phillips et al., 2000) the baseline PCA was

trained with randomly chosen 500 FERET images. These two dif-

ferent training scenarios make it very difficult to directly compare

these two algorithms and their various components. Even if we

were to compare them, it is obvious that LDA should have a great

advantage as it was trained with roughly two times bigger training

set. The poor performance of our implementation of LDA could

also be due to the relatively small training set. Similar problem was

identified and researched in detail in Martinez and Kak, 2001 where

it is concluded that when the training set is small, PCA can outper-

form LDA. Another important thing to mention is that LDA is much

more sensitive to different training sets than PCA or ICA. There is

Figure 7. Hypothesis testing for the dup1 probe set—comparing the best projection–metric combinations from Figure 4. 1 or �1 means that

one or the other algorithm is significantly better at a given rank and 0 means that there is no significant difference.

Figure 8. Hypothesis testing for the dup2 probe set—comparing the best projection–metric combinations from Figure 4. 1 or �1 means that

one or the other algorithm is significantly better at a given rank and 0 means that there is no significant difference.
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reason to believe that a different training set could yield different,

possibly better, results for LDA. But again, the goal of this paper

was to introduce a direct comparison in equal working conditions.

By using only three images per class for training we tried to stay

close to real-life law enforcement applications, where it is difficult

to expect to have more than a few images of an individual. It is also

very important to mention that our training set and query set over-

lap in only 33% of classes (so some of the classes later used in tests

are new to the systems), whereas many other papers report results

training the algorithms with the images of same individuals later to

be used in tests. This makes our tests bit more difficult for the

algorithms.

V. CONCLUSION

This paper presented an independent, comparative study of three

most popular appearance-based face recognition projection methods

(PCA, ICA, and LDA) and their accompanied four distance metrics

(L1, L2, cosine, and Mahalanobis) in completely equal working

conditions. This experimental setup yielded 16 different algorithms

to be compared. From our independent comparative research we

can derive the following conclusions: (1) no claim can be made

about which is the best combination for the different expression task
since the differences do not seem to be statistically significant

(although LDAþCOS seems to be promising), (2) PCAþL1 outper-

forms ICA1 and LDA with illumination changes task at all ranks

and outperforms ICA2 from rank 27 further on, (3) COS seems to

be the best choice of metric for ICA2 and gives good (but not

always the best compared to other projection methods) results for

all probe sets, (4) ICA2þCOS combination turned out to be the best

choice for temporal changes task, (5) in many cases L2 produced

lower results than L1 or COS and it is surprising that it was used so

often in the past, (6) L1 and COS metrics produced best overall

results across all algorithms and should be further investigated.

Finally, it can be stated that, when tested in completely equal work-

ing conditions, no algorithm (projection–metric combination) can

be considered the best time and the choice of appropriate algorithm

can only be made for a specific task. Some theoretical properties of

the described algorithms were also confirmed and illustrated.

We also presented a new methodology for comparing two CMS

curves, based on McNemar’s Test of statistical significance. It was

shown that straightforward conclusions based only on the inspec-

tion of the two curves should not be drawn, since the difference in

performance could easily be insignificant and some wrong conclu-

sions could be made regarding the exact rank at which the curves

start to differ.
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